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Last class

1. f (a, b) is a local maximum of f if f (a, b) ≥ f (x , y) for all
points (x , y) in the domain of f near (a, b).

2. f (a, b) is a local minimum of f if f (a, b) ≤ f (x , y) for all
points (x , y) in the domain of f near (a, b).

Theorem
If f (x , y) has a local min or max at (a, b) and fx(a, b), fy (a, b) are
defined, then fx(a, b) = 0 and fy (a, b) = 0. Another way to say

this is ∇f (a, b) = ~0.

Definition
f (x , y) has a saddle point at a critical point (a, b) if (a, b) isn’t a
local max and (a, b) isn’t a local min.



The second derivative test

Definition
The discriminant (or Hessian) of a function f (x , y) is the function

H(f ) = fxx fyy − f 2xy =

∣∣∣∣fxx fxy
fxy fyy

∣∣∣∣ .
Theorem
Suppose that f , fx , fy , fxx , fyy are continuous near (a, b) with
fy (a, b) = fx(a, b) = 0. The following hold:

i) If fxx(a, b) < 0 and H(f ) > 0 at (a, b), then f has a local
max at (a, b).

ii) If fxx(a, b) > 0 and H(f ) > 0 at (a, b), then f has a local
minimum at (a, b).

iii) If H(f ) < 0 at (a, b), then f has a saddle point at (a, b).

iv) The test is inconclusive at (a, b) if H(f ) = 0 at (a, b).
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Example

Example

Let f (x , y) = xy − x2 − y2 − 2x − 2y + 4. Classify all critical
values of f .

We have fx(x , y) = y − 2x − 2 and fy (x , y) = x − 2y − 2. To find
critical values, we have to solve the system

y − 2x − 2 = 0 and x − 2y − 2 = 0.

This has the solution (−2,−2).
To determine whether (−2,−2) is an extreme value, we have to
determine whether H(f ) is positive or negative at (−2,−2). We
have fxx(x , y) = −2, fyy (x , y) = −2, and fxy (x , y) = 1. So in this
case H(f ) is constant and equals (−2)(−2)− 12 = 3 > 0. So
(−2,−2) is a local max or a local min. Then because
fxx(−2,−2) < 0, we have (−2,−2) is a local max.
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Another example

Example

Find the local extrema of f (x , y) = 3y2 − 2y3 − 3x2 + 6xy .

We find fx(x , y) = −6x + 6y and fy (x , y) = 6y − 6y2 + 6x .
Setting the first equal to zero gives x = y , and substituting this
into the second equation gives 12x − 6x2 = 6x(2− x) = 0, so
x = 0 or x = 2. Thus the critical points are (0, 0) and (2, 2).
To determine whether these points are local extrema or saddle
points, we calculate the second order partial derivatives and the
Hessian H(f ). We have fxx(x , y) = −6, fyy (x , y) = 6− 12y , and
fxy (x , y) = 6. Thus

H(f ) = (−6)(6− 12y)− 62 = −36 + 72y − 36 = 72(y − 1).

At (0, 0), H(f ) is 72(0− 1) < 0, meaning (0, 0) is a saddle point.
At (2, 2), H(f ) is 72(2− 1) > 0 and fxx(2, 2) = −6 < 0, so (2, 2)
is a local max.
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Absolute Extrema

We need some definitions to talk about extrema that are absolute
rather than just local.

Definition
Let R be a region in the plane. We say

R is bounded if it lies inside a disk of finite radius.

R is closed if it contains all its boundary points.

We will think of closed and bounded regions as the
two-dimensional version of closed intervals.
These definitions will be necessary for the extreme value theorem
and will also be useful in Chapter 15 for integration.
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Extreme value theorem

Theorem
Let f (x , y) be continuous. Let R be a closed, bounded region in
the domain of f (x , y). Then f (x , y) attains a maximum on R.

This is reminiscent of the extreme value theorem for single-variable
functions.
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Absolute max/min process

Given a closed and bounded region R, we can follow the process
below to find absolute extrema of a function f (x , y) over R.

1. List all interior points of R where there is a local
max/min/saddle point.

2. List the boundary points of R where f has local
maxima/minima.

3. Evaluate f at each point in the lists above and take the
largest/smallest values as the absolute extrema.

This process breaks our search down into two cases: points (a, b)
in the interior of R and points (a, b) on the boundary of R.
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Example

Example

Find the absolute max/min of f (x , y) = 2 + 2x + 4y − x2 − y2 on
the triangular region bounded by x = 0, y = 0, and y = 9− x .

1. List all interior points of R where there is a local
max/min/saddle point.
fx(x , y) = 2− 2x and fy (x , y) = 4− 2y . Setting these equal to 0,
we get x = 1 and y = 2. This gives the point (1, 2), which is in
the interior of R.
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2. List the boundary points of R where f has local
maxima/minima.
On the boundary line y = 0, we have f (x , 0) = 2 + 2x − x2. So
f ′(x) = 2− 2x , and setting this equal to 0 gives x = 1. Thus the
point (1, 0) is a possible extrema on R. We also take the end
points (0, 0) and (9, 0).
On the boundary line x = 0, we have f (0, y) = 2 + 4y − y2, so
f ′(y) = 4− 2y and setting this equal to 0 gives y = 2. So (0, 2)
and the end point (0, 9) are the possible extrema from this portion
of the boundary.
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2. continued

Example

Find the absolute max/min of f (x , y) = 2 + 2x + 4y − x2 − y2 on
the triangular region bounded by x = 0, y = 0, and y = 9− x .

1. (1,2)
2. (1,0), (0,0), (9,0), (0,2), (0,9)

On the boundary line y = 9− x , we have

f (x , 9− x) = 2 + 2x + 4(9− x)− x2− (9− x)2 = −2x2 + 16x − 43.

Thus f ′(x) = −4x + 16. Setting this equal to 0 gives x = 4.
Substituting into y = 9− x , we find y = 5. So we add the point
(4, 5) to our search.
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the triangular region bounded by x = 0, y = 0, and y = 9− x .

1. (1,2)
2. (1,0), (0,0), (9,0), (0,2), (0,9), (4,5)

3. Evaluate f at each point in the lists above and take the
largest/smallest values as the absolute extrema.

f (1, 2) = 7
f (0, 0) = 2
f (1, 0) = 3

f (9, 0) = −61
f (0, 2) = 6
f (0, 9) = −43

f (4, 5) = −11

Thus the absolute maximum of f on R is 7 and occurs at the local
max (1, 2). The absolute minimum of f on R is -61 and occurs on
the boundary point (9, 0).
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