Lecture 18
 14.7 Second Derivative Test and Extreme Value Theorem

Jeremiah Southwick

March 4, 2019

Things to note

Upcoming dates:
Today: WF Drop Date
Wednesday: Review
Friday: Exam 2

Last class

1. $f(a, b)$ is a local maximum of f if $f(a, b) \geq f(x, y)$ for all points (x, y) in the domain of f near (a, b).
2. $f(a, b)$ is a local minimum of f if $f(a, b) \leq f(x, y)$ for all points (x, y) in the domain of f near (a, b).

Theorem
If $f(x, y)$ has a local min or max at (a, b) and $f_{x}(a, b), f_{y}(a, b)$ are defined, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. Another way to say this is $\nabla f(a, b)=\overrightarrow{\mathbf{0}}$.

Definition

$f(x, y)$ has a saddle point at a critical point (a, b) if (a, b) isn't a local max and (a, b) isn't a local min.

The second derivative test

The second derivative test

Definition
The discriminant (or Hessian) of a function $f(x, y)$ is the function

$$
H(f)=f_{x x} f_{y y}-f_{x y}^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right| .
$$

The second derivative test

Definition

The discriminant (or Hessian) of a function $f(x, y)$ is the function

$$
H(f)=f_{x x} f_{y y}-f_{x y}^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right| .
$$

Theorem
Suppose that $f, f_{x}, f_{y}, f_{x x}, f_{y y}$ are continuous near (a, b) with $f_{y}(a, b)=f_{x}(a, b)=0$. The following hold:

The second derivative test

Definition

The discriminant (or Hessian) of a function $f(x, y)$ is the function

$$
H(f)=f_{x x} f_{y y}-f_{x y}^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right| .
$$

Theorem
Suppose that $f, f_{x}, f_{y}, f_{x x}, f_{y y}$ are continuous near (a, b) with $f_{y}(a, b)=f_{x}(a, b)=0$. The following hold:
i) If $f_{x x}(a, b)<0$ and $H(f)>0$ at (a, b), then f has a local max at (a, b).

The second derivative test

Definition

The discriminant (or Hessian) of a function $f(x, y)$ is the function

$$
H(f)=f_{x x} f_{y y}-f_{x y}^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right| .
$$

Theorem

Suppose that $f, f_{x}, f_{y}, f_{x x}, f_{y y}$ are continuous near (a, b) with $f_{y}(a, b)=f_{x}(a, b)=0$. The following hold:
i) If $f_{x x}(a, b)<0$ and $H(f)>0$ at (a, b), then f has a local max at (a, b).
ii) If $f_{x x}(a, b)>0$ and $H(f)>0$ at (a, b), then f has a local minimum at (a, b).

The second derivative test

Definition

The discriminant (or Hessian) of a function $f(x, y)$ is the function

$$
H(f)=f_{x x} f_{y y}-f_{x y}^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

Theorem

Suppose that $f, f_{x}, f_{y}, f_{x x}, f_{y y}$ are continuous near (a, b) with $f_{y}(a, b)=f_{x}(a, b)=0$. The following hold:
i) If $f_{x x}(a, b)<0$ and $H(f)>0$ at (a, b), then f has a local max at (a, b).
ii) If $f_{x x}(a, b)>0$ and $H(f)>0$ at (a, b), then f has a local minimum at (a, b).
iii) If $H(f)<0$ at (a, b), then f has a saddle point at (a, b).

The second derivative test

Definition

The discriminant (or Hessian) of a function $f(x, y)$ is the function

$$
H(f)=f_{x x} f_{y y}-f_{x y}^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

Theorem

Suppose that $f, f_{x}, f_{y}, f_{x x}, f_{y y}$ are continuous near (a, b) with $f_{y}(a, b)=f_{x}(a, b)=0$. The following hold:
i) If $f_{x x}(a, b)<0$ and $H(f)>0$ at (a, b), then f has a local max at (a, b).
ii) If $f_{x x}(a, b)>0$ and $H(f)>0$ at (a, b), then f has a local minimum at (a, b).
iii) If $H(f)<0$ at (a, b), then f has a saddle point at (a, b).
iv) The test is inconclusive at (a, b) if $H(f)=0$ at (a, b).

Example

Example

Let $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$. Classify all critical values of f.

Example

Example

Let $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$. Classify all critical values of f.
We have $f_{x}(x, y)=y-2 x-2$ and $f_{y}(x, y)=x-2 y-2$. To find critical values, we have to solve the system

$$
y-2 x-2=0 \text { and } x-2 y-2=0
$$

This has the solution $(-2,-2)$.

Example

Example

Let $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$. Classify all critical values of f.
We have $f_{x}(x, y)=y-2 x-2$ and $f_{y}(x, y)=x-2 y-2$. To find critical values, we have to solve the system

$$
y-2 x-2=0 \text { and } x-2 y-2=0
$$

This has the solution $(-2,-2)$.
To determine whether $(-2,-2)$ is an extreme value, we have to determine whether $H(f)$ is positive or negative at $(-2,-2)$. We have $f_{x x}(x, y)=-2, f_{y y}(x, y)=-2$, and $f_{x y}(x, y)=1$. So in this case $H(f)$ is constant and equals $(-2)(-2)-1^{2}=3>0$. So $(-2,-2)$ is a local max or a local min. Then because $f_{x x}(-2,-2)<0$, we have $(-2,-2)$ is a local max.

Another example

Example

Find the local extrema of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.

Another example

Example

Find the local extrema of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.
We find $f_{x}(x, y)=-6 x+6 y$ and $f_{y}(x, y)=6 y-6 y^{2}+6 x$.
Setting the first equal to zero gives $x=y$, and substituting this into the second equation gives $12 x-6 x^{2}=6 x(2-x)=0$, so $x=0$ or $x=2$. Thus the critical points are $(0,0)$ and $(2,2)$.

Another example

Example

Find the local extrema of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.
We find $f_{x}(x, y)=-6 x+6 y$ and $f_{y}(x, y)=6 y-6 y^{2}+6 x$.
Setting the first equal to zero gives $x=y$, and substituting this into the second equation gives $12 x-6 x^{2}=6 x(2-x)=0$, so $x=0$ or $x=2$. Thus the critical points are $(0,0)$ and $(2,2)$.
To determine whether these points are local extrema or saddle points, we calculate the second order partial derivatives and the Hessian $H(f)$. We have $f_{x x}(x, y)=-6, f_{y y}(x, y)=6-12 y$, and $f_{x y}(x, y)=6$. Thus

$$
H(f)=(-6)(6-12 y)-6^{2}=-36+72 y-36=72(y-1) .
$$

At $(0,0), H(f)$ is $72(0-1)<0$, meaning $(0,0)$ is a saddle point. At $(2,2), H(f)$ is $72(2-1)>0$ and $f_{x x}(2,2)=-6<0$, so $(2,2)$ is a local max.

Absolute Extrema

We need some definitions to talk about extrema that are absolute rather than just local.
Definition
Let R be a region in the plane. We say
R is bounded if it lies inside a disk of finite radius.
R is closed if it contains all its boundary points.

Absolute Extrema

We need some definitions to talk about extrema that are absolute rather than just local.

Definition

Let R be a region in the plane. We say
R is bounded if it lies inside a disk of finite radius.
R is closed if it contains all its boundary points.
We will think of closed and bounded regions as the two-dimensional version of closed intervals.

Absolute Extrema

We need some definitions to talk about extrema that are absolute rather than just local.

Definition

Let R be a region in the plane. We say
R is bounded if it lies inside a disk of finite radius.
R is closed if it contains all its boundary points.
We will think of closed and bounded regions as the two-dimensional version of closed intervals.
These definitions will be necessary for the extreme value theorem and will also be useful in Chapter 15 for integration.

Extreme value theorem

Theorem
Let $f(x, y)$ be continuous. Let R be a closed, bounded region in the domain of $f(x, y)$. Then $f(x, y)$ attains a maximum on R.

Extreme value theorem

Theorem
Let $f(x, y)$ be continuous. Let R be a closed, bounded region in the domain of $f(x, y)$. Then $f(x, y)$ attains a maximum on R.
This is reminiscent of the extreme value theorem for single-variable functions.

Absolute max/min process

Given a closed and bounded region R, we can follow the process below to find absolute extrema of a function $f(x, y)$ over R.

Absolute max/min process

Given a closed and bounded region R, we can follow the process below to find absolute extrema of a function $f(x, y)$ over R.

1. List all interior points of R where there is a local max/min/saddle point.
2. List the boundary points of R where f has local maxima/minima.
3. Evaluate f at each point in the lists above and take the largest/smallest values as the absolute extrema.

Absolute max/min process

Given a closed and bounded region R, we can follow the process below to find absolute extrema of a function $f(x, y)$ over R.

1. List all interior points of R where there is a local max/min/saddle point.
2. List the boundary points of R where f has local maxima/minima.
3. Evaluate f at each point in the lists above and take the largest/smallest values as the absolute extrema.

This process breaks our search down into two cases: points (a, b) in the interior of R and points (a, b) on the boundary of R.

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. List all interior points of R where there is a local max/min/saddle point.

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. List all interior points of R where there is a local $\max / \mathrm{min} /$ saddle point.
$f_{x}(x, y)=2-2 x$ and $f_{y}(x, y)=4-2 y$. Setting these equal to 0 , we get $x=1$ and $y=2$. This gives the point (1,2), which is in the interior of R.

Example

Example

Find the absolute \max / \min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$

Example

Example

Find the absolute \max / \min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. List the boundary points of R where f has local maxima/minima.

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. List the boundary points of R where f has local maxima/minima.
On the boundary line $y=0$, we have $f(x, 0)=2+2 x-x^{2}$. So $f^{\prime}(x)=2-2 x$, and setting this equal to 0 gives $x=1$. Thus the point $(1,0)$ is a possible extrema on R. We also take the end points $(0,0)$ and $(9,0)$.

Example

Example

Find the absolute \max / \min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. List the boundary points of R where f has local maxima/minima.
On the boundary line $y=0$, we have $f(x, 0)=2+2 x-x^{2}$. So $f^{\prime}(x)=2-2 x$, and setting this equal to 0 gives $x=1$. Thus the point $(1,0)$ is a possible extrema on R. We also take the end points $(0,0)$ and $(9,0)$.
On the boundary line $x=0$, we have $f(0, y)=2+4 y-y^{2}$, so $f^{\prime}(y)=4-2 y$ and setting this equal to 0 gives $y=2$. So $(0,2)$ and the end point $(0,9)$ are the possible extrema from this portion of the boundary.

2. continued

Example

Find the absolute \max / \min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. $(1,0),(0,0),(9,0),(0,2),(0,9)$

2. continued

Example

Find the absolute \max / \min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. $(1,0),(0,0),(9,0),(0,2),(0,9)$

On the boundary line $y=9-x$, we have
$f(x, 9-x)=2+2 x+4(9-x)-x^{2}-(9-x)^{2}=-2 x^{2}+16 x-43$.
Thus $f^{\prime}(x)=-4 x+16$. Setting this equal to 0 gives $x=4$. Substituting into $y=9-x$, we find $y=5$. So we add the point $(4,5)$ to our search.

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. $(1,0),(0,0),(9,0),(0,2),(0,9),(4,5)$

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. $(1,0),(0,0),(9,0),(0,2),(0,9),(4,5)$
3. Evaluate f at each point in the lists above and take the largest/smallest values as the absolute extrema.

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. $(1,0),(0,0),(9,0),(0,2),(0,9),(4,5)$
3. Evaluate f at each point in the lists above and take the largest/smallest values as the absolute extrema.

$$
\begin{array}{lll}
f(1,2)=7 & f(9,0)=-61 & f(4,5)=-11 \\
f(0,0)=2 & f(0,2)=6 & \\
f(1,0)=3 & f(0,9)=-43 &
\end{array}
$$

Example

Example

Find the absolute max/min of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region bounded by $x=0, y=0$, and $y=9-x$.

1. $(1,2)$
2. $(1,0),(0,0),(9,0),(0,2),(0,9),(4,5)$
3. Evaluate f at each point in the lists above and take the largest/smallest values as the absolute extrema.

$$
\begin{array}{lll}
f(1,2)=7 & f(9,0)=-61 & f(4,5)=-11 \\
f(0,0)=2 & f(0,2)=6 & \\
f(1,0)=3 & f(0,9)=-43 &
\end{array}
$$

Thus the absolute maximum of f on R is 7 and occurs at the local $\max (1,2)$. The absolute minimum of f on R is -61 and occurs on the boundary point $(9,0)$.

